MNERSE

FUNCTIONS

Remember we talked about functions--taking a set X and mapping into a Set Y

An inverse function would reverse that process and map from Set Y back into Set X

If we map what we get out of the function back, we won't always have a function going back!!!

Steps for Finding the Inverse of a One-to-One Function

Find the inverse of $f(x)=\frac{4}{2-x}$ Let's check this by doing

$$
f \circ f^{-1}
$$

Replace $f(x)$ with y

$$
y=\frac{4}{2-x}
$$

Ensure $f(x)$ is one to one first. Domain may need to be restricted.

Find the inverse of a function:

Example 1: $y=6 x-12$

Step 1: Switch x and $\mathrm{y}: \mathrm{x}=6 \mathrm{y}-12$
Step 2: Solve for $\mathbf{y}: \quad x=6 y-12$

$$
\begin{aligned}
& x+12=6 y \\
& \frac{x+12}{6}=y
\end{aligned}
$$

$$
\frac{1}{6} x+2=y
$$

Example 2:

Given the function: $\mathbf{y}=\mathbf{3} \mathbf{x}^{\mathbf{2}}+\mathbf{2}$ find the inverse:

Step 1: Switch x and $y: x=3 y^{2}+2$
Step 2: Solve for $y: \quad x=3 y^{2}+2$

$$
\begin{aligned}
& x-2=3 y^{2} \\
& \frac{x-2}{3}=y^{2} \\
& \sqrt{\frac{x-2}{3}}=y
\end{aligned}
$$

Ex: Find an inverse of $y=-3 x+6$.

- Steps: -switch x \& y -solve for y

$$
\begin{gathered}
y=-3 x+6 \\
x-6=-3 y \\
\frac{x-6}{-3}=y \\
y=\frac{-1}{3} x+2
\end{gathered}
$$

Finding the Inverse

Given $f(x)=-2 x-7$
then $y=-2 x-7$
solve for $\mathrm{x} \quad \mathrm{x}=\frac{-y-7}{2}$
$f^{-1}(y)=\frac{-y-7}{2}$

$$
y=\frac{x+2}{x-2}
$$

Review from chapter 2

- Relation - a mapping of input values (x-values) onto output values (y -values).
- Here are 3 ways to show the same relation.
$y=x^{2}$

Equation
Table of values

Graph

- Inverse relation - just think: switch the x \& y-values.

Consider the graph of the function $\quad f(x)=2 x+4$

Consider the graph of the function $\quad f(x)=2 x+4$

An inverse function is just a rearrangement with x and y swapped.
So the graphs just swap x and y !

What else do you notice about the graphs?
(-3,
$f^{-1}(x)$ is a reflection of f (in)the line $y=x$
The function and its inverse must meet on $y=x$

Graph $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}^{-1}(\mathrm{x})$ on the same graph.

1.) $\mathrm{y}=\frac{1}{2}|x|+3$

Graph $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}^{-1}(\mathrm{x})$
 2.) $y=(x+3)^{2}-5$ ne same graph.

Notice that the x and y values traded places for the function $f(x)=$ and its inverse.

These functions are reflections of each other about the line $y=x$

This means "inverse function"

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	-8
-1	-1
0	0
1	1
2	8

Let's take the values we got out of the function and put them into the inverse function and plot them
Is this a function? Yes

Graph $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$ and $f^{-1}=\frac{x+2}{3}$ using the same set of axes.

Then compare the two graphs.
Determine the domain and range of the function

and its inverse.

Solution

x	$f(x)=3 x-2$
-1	-5
0	-2
2	4
3	7

x	$f-1(x)=\frac{x+2}{3}$
-5	-1
-2	0
1	1
4	2

Verify that the functions \boldsymbol{f} and \boldsymbol{g} are inverses of each other.

$$
f(x)=(x-2)^{2}, x \geq 2 ; \quad g(x)=\sqrt{x}+2
$$

If we graph $(x-2)^{2}$ it is a parabola shifted right 2.
Is this a one-to-onepunction?
This would not be one-to-one but theyrestricted the domain
and are only taking the function where x is greater than or equal to 2 so we will have a one-to-one function.

e.g. On the same axes, sketch the graph of

$$
y=(x-2)^{2}, \quad x \geq 2
$$

and its inverse.
Solution:

Ex: $f(x)=2 x^{2}-4$ Determine whether $f^{-1}(x)$ is a c.ane inverse equation.

$$
\begin{aligned}
& \frac{x+4}{2}=y^{2} \\
& y= \pm \sqrt{\frac{x+4}{2}}
\end{aligned}
$$

$\mathrm{f}^{-1}(\mathrm{x})$ is not a function.

$$
\begin{aligned}
& y=2 x^{2}-4 \\
& x=2 y^{2}-4 \\
& x+4=2 y^{2}
\end{aligned}
$$

OR, if you fix
the tent in the basement..

Ex: $g(x)=2 x^{3}$

Inverse is a function!

OR, if you fix the tent in the basement...

Exercise

$$
\begin{aligned}
& 1 \\
& f(x)=x^{2}-1
\end{aligned} \text {. }{ }^{\text {Sketch the funetifint })} \text { where }
$$

(b) Write down the range of $f(x)$
(c) Suggest a suitable domain for sfo(that the inverse function $f^{-1}(a)$ be found.
(d) Find $f^{-1}(x)$ and write down its domain and range.
(e) On the same axes sketgh $=f^{-1}(x)$

Solution:
(a)

(d) Inverse: Let

Rearrange:
$y=x^{2}-1$

Swap:

$$
\begin{aligned}
& \sqrt{y+1}=x \\
& \sqrt{x+1}=y \\
\Rightarrow \quad & f^{-1}(x)=\sqrt{x+1}
\end{aligned}
$$

Domain: $x \geq-1 \quad$ Range: $y \geq 0$

Solution:
(a)
Rearrange:

$$
\text { We nov }-\sqrt{y+1}=x \text { since } x \leq 0
$$

Solution:
(a)

(b) Range: $y \geq-1$
(c) Suppose you chose $x \leq 0$
for the domain
As before Let $y=x^{2}-1$
Rearrange:
$y+1=x^{2}$
We nov $-\sqrt{y+1}=x$ since $x \leq 0$
Swap: $\quad-\sqrt{x+1}=y$

$$
f^{-1}(x)=-\sqrt{x+1}
$$

Domain: $x \geq-1 \quad$ Range: $y \leq 0$

