Review of Inequalities

Less than/ Greater than

Represented with an open circle on a number line. Does not include the value

Less than or equal to/
Greater than or equal to

Represented with a closed circle on a number line. Includes the value.

Solving Absolute Value Inequalities "LESS THAN"
 $$
|3 x-4| \stackrel{\downarrow}{\leq} 8
$$

1. Rewrite with a (-) sign on the left. Use another "less than" sign.

$$
\begin{aligned}
& -8 \leq 3 x-4 \leq 8 \\
& +4 \quad+4+4
\end{aligned}
$$

2. Solve for x on all three sides at once!
$-4 \leq 3 x \leq 12$
3. Graph your answer on a number line.

Solving Absolute Value Inequalities

$$
\begin{aligned}
& \text { "GREATOR THAN" } \\
& |-2 x+11|>5
\end{aligned}
$$

KEEP first equation the same

$$
\begin{array}{ccc}
-2 x+11>5 & \text { OR } & -2 x+11<-5 \\
-2 x>-6 & \text { OR } & -2 x<-16 \\
x<3 & \text { OR } & x>8
\end{array}
$$

CHANGE to a negative FLIP the inequality

Ex $|4 x-2|+7<10$
Isolate the absolute
$|4 x-2|<3 \quad$ value first!
$-3<4 x-2<3$
Put -3 on the other side, draw a less than sign
$-1<4 x<5 \quad$ solve
$-1 / 4<x<5 / 4$

$3|9 x+5|+1>16$

$$
|9 x+5|>5
$$

Isolate the absolute

 value first!$$
\begin{array}{lcl}
9 x+5>5 & \begin{array}{l}
\text { Great OR than: } 2 \\
\text { equations! }
\end{array} & 9 x+5<-5 \\
9 x>0 & \text { OR } & 9 x<-10 \\
x>0 & \text { OR } & x<-10 / 9
\end{array}
$$

When will an absolute value be BIGGER than a negative number?
$|-2 x+3|>-4 \quad$ Every time! $\quad \mathbb{R}$
When will an abs value be SMALLER than a negative number?
$|-2 x+3|<-4 \quad$ Never! \varnothing no solution
When will an abs value EQUAL a negative number?
$|-2 x+3|=-4 \quad$ Never! $\quad \varnothing$ no solution

$$
|2 x-4| \geq 6
$$

$$
\left|\frac{1}{2} x+5\right|-6<5
$$

$$
|-3 x+7|+3 \leq 2
$$

