Notes 10-2

Adding, Subtracting, and Multiplying Radical Expressions
I. Adding and Subtracting Radical Expressions
A. Like Radicals

Square-root expressions with the same radicand are examples of like radicals.

Like Radicals	$2 \sqrt{5}$ and $4 \sqrt{5}$	$6 \sqrt{x}$ and $-2 \sqrt{x}$	$3 \sqrt{4 t}$ and $\sqrt{4 t}$
Unlike Radicals	2 and $\sqrt{15}$	$6 \sqrt{x}$ and $\sqrt{6 x}$	$3 \sqrt{2}$ and $2 \sqrt{3}$

Helpful Hint

Combining like radicals is similar to combining like terms.

COMPARE:

$$
\begin{aligned}
& 2 \sqrt{5}+4 \sqrt{5}=6 \sqrt{5} \\
& 2 x+4 x=6 x
\end{aligned}
$$

You can combine like radicals by adding or subtracting the numbers multiplied by the radical and keeping the radical the same.

B. Basic Examples

Example 1: Adding and Subtracting Square-Root Expressions

Add or subtract.
A. $9 \sqrt{3}-4 \sqrt{3}$
$9 \sqrt{3}-4 \sqrt{3} \quad$ The terms are like radicals. $5 \sqrt{3}$
B. $6 \sqrt{x}+8 \sqrt{y}$
$6 \sqrt{x}+8 \sqrt{y}$
The terms are unlike radicals. Do not combine.

Add or subtract.
c. $\sqrt{\boldsymbol{m}}-\mathbf{7} \sqrt{\boldsymbol{m}}$

$$
\begin{array}{r}
1 \sqrt{m}-7 \sqrt{m} \\
-6 \sqrt{m}
\end{array}
$$

D. $2 \sqrt{x y}+2 \sqrt{y}+9 \sqrt{x y}$
$2 \sqrt{x y}+2 \sqrt{y}+9 \sqrt{x y}$
$11 \sqrt{x y}+2 \sqrt{y}$
$\sqrt{m}=1 \sqrt{m}$, the terms are like radicals.
Combine like radicals.

Identify like radicals.

Combine like radicals.

More Examples

Add or subtract.
a. $5 \sqrt{7}-6 \sqrt{7}$

$$
\begin{gathered}
5 \sqrt{7}-6 \sqrt{7} \\
-\sqrt{7}
\end{gathered}
$$

b. $8 \sqrt{3}-5 \sqrt{3}$
$8 \sqrt{3}-5 \sqrt{3}$
$3 \sqrt{3}$
The terms are like radicals.
Combine like radicals.

The terms are like radicals.

Combine like radicals.

Add or subtract.
c. $\mathbf{4} \sqrt{n}+\mathbf{4} \sqrt{n}$
$4 \sqrt{n}+4 \sqrt{n}$ $8 \sqrt{n}$
d. $\sqrt{2 s}-\sqrt{5 s}+9 \sqrt{5 s}$
$\sqrt{2 s}-1 \sqrt{5 s}+9 \sqrt{5 s} \quad$ Identify like radicals.
$\sqrt{2 s}+8 \sqrt{5 s}$

The terms are like radicals.

Combine like radicals.

Combine like radicals.

C. Simplifying before combining

Sometimes radicals do not appear to be like until they are simplified. Simplify all radicals in an expression before trying to identify like radicals.

Example 1:

Simplify each expression. All variables represent nonnegative numbers.

$$
\begin{array}{cl}
\sqrt{\mathbf{4 5}}-\sqrt{\mathbf{2 0}} & \\
\sqrt{9(5)}-\sqrt{4(5)} & \text { Factor the radicands using perfect squares. } \\
\sqrt{9} \sqrt{5}-\sqrt{4} \sqrt{5} & \text { Product Property of Square Roots } \\
3 \sqrt{5}-2 \sqrt{5} & \text { Simplify. } \\
\sqrt{5} & \text { Combine like radicals. }
\end{array}
$$

Example 2

Simplify each expression. All variables represent nonnegative numbers.

$9 \sqrt{75}+2 \sqrt{50}$

$$
9 \sqrt{3(25)}+2 \sqrt{2(25)}
$$

Factor the radicands using perfect squares.
$9 \sqrt{3} \sqrt{25}+2 \sqrt{2} \sqrt{25}$
$9(5) \sqrt{3}+2(5) \sqrt{2}$
$45 \sqrt{3}+10 \sqrt{2}$
Product Property of Square Roots

Simplify.
The terms are unlike radicals. Do not combine.

Example 3:

Simplify each expression. All variables represent nonnegative numbers.
$\sqrt{75 y}-2 \sqrt{27 y}+\sqrt{48 y}$
$\sqrt{25(3 y)}-2 \sqrt{9(3 y)}+\sqrt{16(3 y)}$
$\sqrt{25} \sqrt{3 y}-2 \sqrt{9} \sqrt{3 y}+\sqrt{16} \sqrt{3 y}$

$$
\begin{gathered}
5 \sqrt{3 y}-2(3) \sqrt{3 y}+4 \sqrt{3 y} \\
5 \sqrt{3 y}-6 \sqrt{3 y}+4 \sqrt{3 y} \\
3 \sqrt{3 y}
\end{gathered}
$$

Factor the radicands using perfect squares.

Product Property of Square Roots

Simplify.

Combine like radicals.

Example 4

Simplify each expression. All variables represent nonnegative numbers.

$$
\begin{array}{cl}
\sqrt{\mathbf{5 4}}+\sqrt{\mathbf{2 4}} & \\
\sqrt{9(6)}+\sqrt{4(6)} & \text { Factor the radicands using perfect squares. } \\
\sqrt{9} \sqrt{6}+\sqrt{4} \sqrt{6} & \text { Product Property of Square Roots } \\
3 \sqrt{6}+2 \sqrt{6} & \text { Simplify. } \\
5 \sqrt{6} & \text { Combine like radicals. }
\end{array}
$$

Example 5

Simplify each expression. All variables represent nonnegative numbers.
$4 \sqrt{27}-\sqrt{18}$
$4 \sqrt{9(3)}-\sqrt{9(2)}$
Factor the radicands using perfect squares.
$4 \sqrt{9} \sqrt{3}-\sqrt{9} \sqrt{2}$
Product Property of Square Roots
$4(3) \sqrt{3}-3 \sqrt{2}$
Simplify.
$12 \sqrt{3}-3 \sqrt{2}$
The terms are unlike radicals. Do not combine.

Example 6

Simplify each expression. All variables represent nonnegative numbers.
$\sqrt{12 y}+\sqrt{27 y}$
$\sqrt{4(3 y)}+\sqrt{9(3 y)}$
$\sqrt{4} \sqrt{3 y}+\sqrt{9} \sqrt{3 y}$
$2 \sqrt{3 y}+3 \sqrt{3 y}$
$5 \sqrt{3 y}$

Factor the radicands using perfect squares.

Product Property of Square Roots

Simplify.

Combine like radicals.

More examples

Ex7: $\sqrt{27}+\sqrt{75}=\sqrt{9 \cdot 3}+\sqrt{25 \cdot 3}=3 \sqrt{3}+5 \sqrt{3}=8 \sqrt{3}$
Ex8: $\quad 3 \sqrt{20}-7 \sqrt{45}=3 \sqrt{4 \cdot 5}-7 \sqrt{9 \cdot 5}=$

$$
3 \cdot 2 \sqrt{5}-7 \cdot 3 \sqrt{5}=6 \sqrt{5}-21 \sqrt{5}=-15 \sqrt{5}
$$

Ex 9:

$$
\begin{aligned}
& \sqrt{36}-\sqrt{48}-4 \sqrt{3}-\sqrt{9}=6-\sqrt{16 \cdot 3}-4 \sqrt{3}-3= \\
& 6-4 \sqrt{3}-4 \sqrt{3}-3=3-8 \sqrt{3}
\end{aligned}
$$

More Examples

Ex 10:

$$
\begin{aligned}
& \sqrt{9 x^{4}}-\sqrt{36 x^{3}}+\sqrt{x^{3}}=3 x^{2}-6 \sqrt{x^{2} x}+\sqrt{x^{2} x}= \\
& 3 x^{2}-6 x \sqrt{x}+x \sqrt{x}=3 x^{2}-5 x \sqrt{x}
\end{aligned}
$$

Ex 11:

$$
\begin{gathered}
10 \sqrt[3]{81 p^{6}}-\sqrt[3]{24 p^{6}}=10 \sqrt[3]{27 \cdot 3 p^{6}}-\sqrt[3]{8 \cdot 3 p^{6}}= \\
10 \cdot 3 p^{2} \sqrt[3]{3}-2 p^{2} \sqrt[3]{3}=30 p^{2} \sqrt[3]{3}-2 p^{2} \sqrt[3]{3}= \\
28 p^{2} \sqrt[3]{3}
\end{gathered}
$$

D. Applications

Example 1: Geometry Application

Find the perimeter of the triangle. Give the answer as a radical expression in simplest form.

$$
\begin{array}{cl}
10+13 \sqrt{5}+3 \sqrt{20} & \text { Write an expression for perimeter. } \\
10+13 \sqrt{5}+3 \sqrt{4(5)} & \text { Factor 20 using a perfect square. } \\
10+13 \sqrt{5}+3 \sqrt{4} \sqrt{5} & \text { Product Property of Square Roots } \\
10+13 \sqrt{5}+3(2) \sqrt{5} & \text { Simplify. } \\
10+13 \sqrt{5}+6 \sqrt{5} & \text { Combine like radicals. } \\
10+19 \sqrt{5} & \text { The perimeter is }(10+19 \sqrt{5}) \mathrm{mm} .
\end{array}
$$

II. Multiplying Radical Expressions

A. Using the Distributive Property

Ex 1: Multiply. Write the product in simplest form. All variables represent nonnegative numbers.

$$
\begin{array}{ll}
\sqrt{3}(\mathbf{7}-\sqrt{\mathbf{8}}) & \\
\sqrt{3}(7)-\sqrt{3} \sqrt{8} & \text { Distribute } \sqrt{3} . \\
7 \sqrt{3}-\sqrt{3(8)} & \text { Product Property of Square Roots. } \\
7 \sqrt{3}-\sqrt{24} & \text { Multiply the factors in the second radicand. } \\
7 \sqrt{3}-\sqrt{4(6)} & \\
7 \sqrt{3}-\sqrt{4} \sqrt{6} & \text { Factor 24 using a perfect-square factor. } \\
7 \sqrt{3}-2 \sqrt{6} & \text { Simpoct Property of Square Roots }
\end{array}
$$

Ex 2: Multiply. Write the product in simplest form. All variables represent nonnegative numbers.

$$
\begin{array}{cl}
\sqrt{\mathbf{2}}(\sqrt{\mathbf{8}}+\sqrt{\mathbf{1 8}}) & \\
\sqrt{2} \sqrt{8}+\sqrt{2} \sqrt{18} & \text { Distribute } \quad \sqrt{2} . \\
\sqrt{2(8)}+\sqrt{2(18)} & \text { Product Property of Square Roots } \\
\sqrt{16}+\sqrt{36} & \text { Simplify the radicands. } \\
4+6 & \text { Simplify. } \\
10 &
\end{array}
$$

Ex 3: Multiply. Write the product in simplest form. All variables represent nonnegative numbers.

$$
\begin{array}{ll}
\sqrt{6}(\sqrt{8}-3) & \\
\sqrt{6} \sqrt{8}-3 \sqrt{6} & \text { Distribute } \sqrt{6} . \\
\sqrt{8(6)}-3 \sqrt{6} & \text { Product Property of Square Roots } \\
\sqrt{48}-3 \sqrt{6} & \text { Multiply the factors in the first radicand. } \\
\sqrt{16(3)}-3 \sqrt{6} & \text { Factor 48 using a perfect-square factor. } \\
\sqrt{16} \sqrt{3}-3 \sqrt{6} & \text { Product Property of Square Roots } \\
4 \sqrt{3}-3 \sqrt{6} & \text { Simplify. }
\end{array}
$$

Ex 4: Multiply. Write the product in simplest form. All variables represent nonnegative numbers.

$$
\begin{array}{cll}
\sqrt{5}(\sqrt{\mathbf{1 0}}+4 \sqrt{3}) & & \\
\sqrt{5} \sqrt{10}+\sqrt{5}(4 \sqrt{3}) & \text { Distribute } \quad \sqrt{5} . \\
\sqrt{5(10)}+4 \sqrt{15} & \text { Product Property of Square Roots } \\
\sqrt{50}+4 \sqrt{15} & \\
\sqrt{2(25)}+4 \sqrt{15} & \text { Factor } 50 \text { using a perfect-square fa } \\
5 \sqrt{2}+4 \sqrt{15} & \text { Simplify. }
\end{array}
$$

More Examples

Ex 5:

$\sqrt{7}(\sqrt{7}-\sqrt{3})=\sqrt{7} \cdot \sqrt{7}-\sqrt{7} \cdot \sqrt{3}=\sqrt{49}-\sqrt{21}=$

$$
7-\sqrt{21}
$$

Ex 6:

$$
\begin{aligned}
\sqrt{5 x}(\sqrt{x}-3 \sqrt{5})= & \sqrt{5 x^{2}}-3 \sqrt{25 x}=x \sqrt{5}-3 \cdot 5 \sqrt{x}= \\
& x \sqrt{5}-15 \sqrt{x}
\end{aligned}
$$

B. Applications

Example 1

Find the perimeter of a rectangle whose length is $3 \sqrt{b}$ inches and whose width is $2 \sqrt{b}$ inches. Give your answer as a radical expression in simplest form.

$2(3 \sqrt{b}+2 \sqrt{b})$
Write an expression for perimeter $2(l+w)$.
(2) $3 \sqrt{b}+(2) 2 \sqrt{b}$

Multiply each term by 2 .

$$
\begin{gathered}
6 \sqrt{b}+4 \sqrt{b} \\
10 \sqrt{b}
\end{gathered}
$$

Simplify.
Combine like radicals.
The perimeter is $\quad \mathrm{in} 10 \sqrt{b}$

Lesson Quiz

Multiply. Write each product in simplest form. All variables represent nonnegative numbers.

1. $\sqrt{5} \sqrt{10} \quad 5 \sqrt{2}$
2. $\sqrt{2}(\sqrt{7}+\sqrt{2}) \quad \sqrt{14}+2$
3. $(3 \sqrt{6})^{2} \quad 54$
4. $(6+\sqrt{3})(2-\sqrt{3}) \quad 9-4 \sqrt{3}$
5. $3 \sqrt{6 x} \sqrt{8 x} \quad 12 x \sqrt{3}$
6. $(2+\sqrt{5})^{2}$
$9+4 \sqrt{5}$
7. $\sqrt{3}(5-\sqrt{18}) 5 \sqrt{3}-3 \sqrt{6}$
